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Functions
INTRO Values, Expressions, Functions

Values are numbers or other mathematical objects (for now)
Ex. , , 
Racket has unbounded integers: they can be as big as desired
Racket can store both exact values (rational numbers, integers) and inexact
values ( , )

It is better to use exact values if possible
Inexact values are flagged with a "#" in the terminal

Expressions combine values and operators
Ex. , , 

Functions generalize a certain sequence of operators and values
Ex. 
Functions definitions have three parts

Name (f, g, etc.)
Parameters (x, y, etc.)
Algebraic expression (expression that relates parameters to an output)

The parameters in the algebraic expression are used as placeholders for future
values
An application of a function supplies arguments for the parameters
A function is evaluated by substitution: arguments are evaluated before they are
passed into functions, which are themselves evaluated (etc) until everything has
been evaluated

Canonical Form
Representing functions in different ways can lead to ambiguity, and different results
for expressions that are mathematically equivalent
So, racket has a canonical form for functions

Canonical form: a preferred notation that must be adhered to
There are two rules:

Functions can only take values as arguments
Functions are evaluated and substituted left to right

This way, there is only one way/order an expression can be evaluated

Expressions in racket

1 5
2 π

π √2

5 + 2 sin 5π/6 √2

f(a, b) = a2 + b2



In regular math, parentheses are used for function application ( ) and specifying
the order of operations ( )
We can combine these two uses by treating infix operators (operators that sit
between values like , ) as functions, which they are.

Ex.  is the same as 
Doing this has the advantage of remove the need to memorize or get everyone
to agree to a certain order of operations

In racket, the syntax for the expression  is (+ a b)
 is written as (/ (+ g (* b c)) d)  in racket

When translating math expressions, five things need to be taken into account: the
order of parameters matters, the order of operations matter, the right function
needs to be used, the right variable names need to be used, and negation matters
(use (- x)  )

Functions in racket

Functions in racket have
A name for the function ( myFunction ), called the identifier
A list of parameters ( a , b )
A single body expression ( (+ x (sqr y)) ), which defines what the function
does

When a user-defined function is evaluated, the values passed as parameters are
substituted into the function, then it is evaluated
A constant can be defined by creating a function with no parameters and an
expression that always evaluates a certain value

Ex. (define k 3)  binds k  to the value 3
A "variable" basically, in a language that dOeSN't hAve vArIaBLeS

Writing Code Efficiently
Constants should be defined when a certain value needs to be used many places in
a function. This saves time as its value will only need to be changed once if its value
needs to be updated
Helper functions are functions that perform often-used subtasks. These often
minimize duplicated code, make modifying the code more efficient, and make
functions more readable.

These usually placed after the function that uses them, unless they define
constants

f(x)

x/(x + 1)

+ −

+(1, 4) 1 + 4

a + b

(a + b ∗ c)/d

(define (myFunction x y) (+ x (sqr y))) 



Scope
If a constant, function, or parameter is defined in multiple places, it may have
different values
Two different scopes: global and function
In racket, the smallest enclosing scope is the one that has priority
DrRacket has a tool that can be used to determine the scope of a variable



The design recipe 🤮

Assignment Header (assignments only)
The assignment header should contain the name of the student, the name of the
assignment being submitted, and the date of submission.

Purpose
Describes what the function actually does

;; (sum-of-squares p1 p2) produces the sum of the squares of p1 and p2 

;; Examples: 

(check-expect (sum-of-squares 3 4) 25) 

(check-expect (sum-of-squares 0 2.5) 6.25) 

;; sum-of-squares: Num Num -> Num 

(define (sum-of-squares p1 p2) 

   (+ (* p1 p1) 

      (* p2 p2))) 

;; Tests: 

(check-expect (sum-of-squares 0 0) 0) 

(check-expect (sum-of-squares -2 7) 53) 

;; ----------------------------------- 

;; CS 135 Assignment 0 

;; Nolan Zurek 

;; September 1 2021 

;; ----------------------------------- 

;; (sum-of-squares p1 p2) produces the sum of the squares of p1 and p2 



The purpose should reference the names of all of the parameters of the function in a way
that indicates what they do.

Examples
Illustrates the typical use of the function

(check-expect x y)  tests whether x = y, where x is usually a function being tested.

If the function returns inexact values, (check-within x y z)  is used instead, where z is
the tolerance to check within

Contract
Describes what kind of arguments the function takes and what value it returns

Any  can be used if any data type is acceptable

If more specification is required (for example, a parameter must be greater than 0, it
needs to be indicated in the contract.

In these cases, the phrase "requires:" should be used, the actual names of the
parameters should be referenced (not their positions), and the relationships between
them should be expressed in mathematical notation.

;; Examples: 

(check-expect (sum-of-squares 3 4) 25) 

(check-expect (sum-of-squares 0 2.5) 6.25) 

;; sum-of-squares: Num Num -> Num 

;; (sum-of-square-roots q1 q2) computes the sum of the square roots of q1 and 

q2 

;; sum-or-square-roots: Num Num -> Num 

;; requires: 

;;   q1 >= 0 

;;   q2 >= 0 



It is also possible that a function may output only a certain set of values of a given type.
In that case, anyof  should be used:

When representing a list of items, use (listof X Y Z)  if the list contains any number of
elements of the types X , Y , and Z , and list (list X Y Z)  if the list always contains that
number of items in that order.

Data definition and template (optional)
If the program contains a data structure that isn't a list  or a ne-list , its data definition
and template must be included in the design recipe.

Definition
Actual implementation of the function in racket

The names of the parameters should accurately describe what they do. If space doesn't
permit, they should be explained in the purpose.

Tests
A representative set of function applications and their expected values (edge cases)

;; foo: Num -> (anyof Str Bool Num) 

;; A (listof X) is one of: 

;; * empty                    ; base definition 

;; * (cons X (listof X))      ; recursive definition 

(define (sum-of-squares p1 p2) 

   (+ (* p1 p1) 

      (* p2 p2))) 

;; Tests: 

(check-expect (sum-of-squares 0 0) 0) 

(check-expect (sum-of-squares -2 7) 53) 



These are more to make sure the function works in all cases, not the typical use-case. 
check-within  should also be used if necessary.

A guideline for tests is that they should make sure all of the code in a program runs. This
can be seen in DrRacket: un-run code is highlighted in black. For conditional statements,
this means a test for every cond  solution, as well as for each boundary case.

For lists, lengths of 0 (empty), 1, and more than one should all be tested.

Examples count as tests.

The design recipe should be written in the order it appears: purpose (draft) → examples -
> contract → purpose (draft) → definition → tests. Data definitions can appear anywhere
between the start of the program and the use of the data type.



Simple Data
Predicates and Booleans
A predicate is a function that evaluates to a boolean

With the exception of the above, predicates often and with ?

There is an (equal? x y)  predicate, but it should only be used if the types of x and y are
unknown and may be different. If you know they will be the same type, use the type-
specific predicate instead.

Predicates (and anything that evaluates to a boolean) can be combined using logic gates
/ boolean operators: not , and , and or .

Short-circuit evaluation occurs when the computer evaluates a part of boolean operator
that immediately determines the outcome. Structuring expressions to favor this makes
programs more efficient because less code is evaluated.

(= x y)     ; returns true if x = y 

(> x y)     ; returns true if x > y 

(< x y)     ; returns true if x < y 

(>= x y)    ; returns true if x > y or if x = y 

(<= x y)    ; returns true if x < y or if x = y 

;;for strings 

(string=? x y), (string>? x y),  ;etc 

(positive? x), (negative? x), (zero? x) 

(even? x), (odd? x) 

(boolean? x), (string? x), (number? x), (integer? x), (char? x) 

(not x)      ; returns false if x is true and true if x is false 

(and x y)    ; returns true if x and y are both true, false otherwise 

(or x y)     ; returns true if either x or y are true, false otherwise 



Conditional expressions
Cond  statements are conditional statements that contain a number of predicate-
expression (question-answer) pairs (denoted inside [ ] . For each predicate, if it
evaluates to true, its corresponding expression is run; otherwise, the next predicate is
evaluated.

In this case, any numerical value of x will be correct. However, if there are holes in the
conditional statement, all of the predicates may evaluate to false; this causes an error. To
avoid this, an else  statement can be written that will evaluate if everything above it
evaluates to false.

Because conditional statements short-circuit once an predicate evaluates to true, there is
no need to perform the same tests in a later predicate-expression pair.

Conditionals can be nested, but it's considered to be bad style because it is hard to read.
Nested conditionals can always be flattened by moving the inner predicate-expression
pairs into the outer conditional statement.

Tests for conditional functions should include a test for every case of the function as well
as a test for every overlap case. DrRacket highlights code that was not run automatically,
so you can know what code hasn't been tested.

(and false true)    ; computer stops at false 

(or true false)     ; computer stops at true

(define (ssqw x)                    ; sin-squared window function 

  (cond                             ; beginning of conditional expression 

    [(< x 0) 0]                     ; if x < 0, expression evaluates to 0 

    [(>= x 1) 1]                    ; if x >= 1, expression evaluates to 1 

    [(< x 1)                        ; if x = 1 

     (sqr (sin (* x pi 0.5)))]))    ; expression evaluates to sin^2(x*pi/2) 

(define (abs n)        ;absolute value of n function 

    (cond              ; beginning of conditional expression 

        [(> n 0) n]    ; if n > 0, abs(n) = n 

        [else -n]))    ; elsewise, abs(n) = -n 



Symbols
Symbols are a type of value that are comprised of an immutable sequence of characters,
denoted 'name

They can be compared using (symbol=? x y)

Symbols are often used for short labels that won't need to be manipulated.

Strings
Strings are sequences of characters denoted by " " .

Strings are stored as a sequence of characters, making it a compound data type (a
symbol is not stored this way). As such, strings have more functions than symbols and
are more easily manipulated.

Datatypes Summary

Type Abbreviation Examples

Number Num 1, 3.5, (sqrt 2

Integer Int 2, 4

(define home-city 'Edmonton) 

(symbol=? 'Hello 'Bonjour)    ; false 

(symbol=? 'Hola 'Hola)        ; true 

(define greeting "good say, sir!") 

(string=? "alpha" "bet")         ; false 

(string<? "alpha" "bet")         ; true 

(string-append "alpha" "bet")    ; "alphabet" 

(string-length "u wot m8")       ; 8 

(string-upcase "the licc")       ; "THE LICC" 

(substring "Apple" 1 3)          ; "pp" 



Type Abbreviation Examples

Natural Number Nat 2, 5, 129

Boolean Bool true, false

Character Char #\A, #\?

String Str "yes", "hello"

Symbol Sym 'CS135, 'male

Any type Any 23.4, false, "lol"



Semantics
Modeling
Programs have a precise meaning and effect. A model of a programming language
describes how a program would behave based on the code. Racket (and functional
languages in general) are really easy to model because they have few underlying
constructs compared to imperative languages.

Spelling Rules
Only certain characters and combinations of characters can be used to name
identifiers (anything followed by (define )
Identifiers can't contain any of these: ( ) , ; { } [ ] ‘ ’ “ ”.
Identifiers can't start with " ' " followed by a valid identifier

Grammars
Syntax How we express ideas
Semantics The ideas that we express
Ambiguity When a syntactically correct sentence has more than one valid
semantically valid meaning
Grammars Specific rules the enforce syntax

Grammars reduce ambiguity in statements
Ex. English: {sentence} = {subject} {verb} {object}
Ex. Racket: {definition} = (define ({variable} {variable} ... ) {expression})

Racket's Semantic Model
Semantic Model A model that predicts the result of a running program. Racket's
semantic model continuously simplifies the program using substitution. Specifically, each
finds the leftmost sub-expression eligible for rewriting, and rewrites it by the rules we are
about to describe. Every substitution step yields a valid program.

Tracing a program: reducing the program step-by-step according to the semantic rules
of the language.

Applying built-in functions



Formal rule: (f v1 ... vn)  ⇒ v  where f  is a built-in function and v  is the value of
f(v1, . . . , vn) .

Applying user-defined functions

Formal rule: (f v1 ... vn) ⇒ exp'  (the values passed into the function are evaluated,
then the function is replaced with its expression with those evaluations substituted in)

Applying constants

Formal rule: id ⇒ val  where (define id val)  occurs to the left.

The definition of a constant is removed from the program once its value has been
substituted in in order to reduce useless code repetition.

Substitution of Cond expressions

There are three formal rules:

 (cond [false exp] ...) ⇒ (cond ...)
 (cond [true exp] ...) ⇒ exp
 (cond [else exp]) ⇒ exp

(+ 3 5)        ; ⇒ 8 

(expt 2 10)    ; ⇒ 1024 

(define (term x y) (* x (sqr y))) 

(term (- 3 1) (+ 1 2)) ⇒  

(term 2 (+ 1 2)) ⇒  

(term 2 3) ⇒  

(* 2 (sqr 3)) ⇒  

(* 2 9) ⇒  

18 

(define x 3) (define y (+ x 1)) y ⇒  

(define y (+ 3 1)) y ⇒  

(define y 4) y ⇒  

4 



Substitution for and  and or

Substitution rules for and

 (and false ...) ⇒ false
 (and true ...) ⇒ (and ...)
 (and) ⇒ true

Substitution rules for or

 (or true ...) ⇒ true
 (or false ...) ⇒ (or ...)
 (or) ⇒ false

Errors
Syntax error A sentence cannot be interpreted using the grammar of the language

Runtime error An expression cannot be reduced to a value by application our semantic
rules.

(define n 5) (define x 6) (define y 7)  

(cond [(even? n) x][(odd? n) y]) ⇒  

(cond [(even? 5) x][(odd? n) y]) ⇒  

(cond [false x][(odd? n) y]) ⇒  

(cond [(odd? n) y]) ⇒  

(cond [(odd? 5) y]) ⇒  

(cond [true y]) ⇒  

y ⇒  

7 

(10 + 1) 

(cond [(> 3 4) x]) ⇒  

(cond [false x]) ⇒  

(cond ) ⇒  

cond: all question results were false 





Lists
Lists are used when a collection of values need to be stored (ex. a shopping list). The
order of the items may or may not matter.

In racket, lists are structured recursively, meaning that a list is defined as a list item plus a
smaller list. The "base case" of the list is the empty list, which is a list of 0 items. In
racket, this is represented by empty .

Lists in racket are defined like this:

An empty list can also be defined:

List Functions
cons : consumes a value and a list, and produces the list with that value appended

length : returns the length of the list

first : returns the first item in the list

(define wish-list  

    (cons "comics"  

        (cons "turtle figure"  

            (cons "donkey kong"  

                (cons "play-doh set"  

                    empty))))) 

(define myList empty) 

(cons "after effects" wish-list) 

;; list containing "after effects", "turtle figure", etc. 

(length wish-list)    ; 4  

(first wish-list)     ; "comics"  



rest : returns the list without the first item

empty?  returns true if the list is empty

cons?  returns true if the item is another cons statement (a list that contains at least one
value)

list?  returns true if the item is a list (including an empty one)

member?  returns true if an item is inside a list, and false otherwise

reverse  returns the list in reverse order

reverse  is not to be used on assignments, but can be useful to correct recursion errors

Navigating Lists
Individual items stored in lists can be accessed by a combination of rest  and first .

(rest wish-list)      ; (cons "turtle figure" (cons "donkey kong" ...)) 

(empty? wish-list)    ; false 

(cons? wish-list)     ; true 

(list? wish-list)     ; true 

(member? "turtle figure" wish-list)    ; true 

(reverse wish-list)   ; "playdough set", "donkey kong", ... 

(define clst  

    (cons "U2"  

        (cons "DaCapo"  

            (cons "Waterboys"  



Lists in Contracts
When a function accepts or returns a list, it must be denoted in the contract. We will use
(listof Type)  to denote our lists.

Syntax and Semantics

Values

List values can either be empty  or (cons v l) , where v  is a value and l  is another list.
Representing the value of a list as a nested series of cond  statements (instead of
something like [1, 2, 3] ) is called constructor notation. v  must be an actual value, not
an expression that evaluates to a value.

Substitution Rules

                empty)))) 

(first clst)                 ; "U2" 

(first (rest clst))          ; "DaCapo" 

(first (rest (rest clst))    ; "Waterboys" 

;; myFunction: (listof Str) -> (listof Nat) 

(first (cons a b)) ⇒ a, where a and b are values.  

(rest (cons a b)) ⇒ b, where a and b are values. 

(empty? empty) ⇒ true.  

(empty? a) ⇒ false, where a is any Racket value other than empty.  

(cons? (cons a b)) ⇒ true, where a and b are values.  

(cons? a) ⇒ false, where a is any Racket value not created using cons. 



Data definitions and templates
cons  can be used to build more than just lists. However, we might build functions
expecting the cons  statements to be organized a certain way. As such, we can specify
data definitions for different structures of cons  statements.

Data definition of a List

With this definition, we can show rigorously that any list really is a list.

List processing template

Functions often reflect the structure of their parameters, so we can develop function
templates to help us write functions for different data definitions, including lists.

Because our recursively defined list has two cases, functions that process lists must also
have two matching cases: one for when the list is empty and one for when it isn't.

If the X in (listof X)  needs processing, a helper function should be written and applied
inside of the conditional statement.

If a list needs to output a list, the recursive case should evaluate a cons  expression.

Examples

Example: count-items  returns the number of items in the list by adding 1 to the length of
the rest of the list.

;; A (listof X) is one of: 

;; * empty                    ; base definition 

;; * (cons X (listof X))      ; recursive definition 

;; listof-X-template: (listof X) → Any  

(define (listof-X-template lox)  

    (cond [(empty? lox) ...]                    ;; base case 

          [(cons? lox) (... (first lox)         ;; something with current item 

          (listof-X-template (rest lox)))]))    ;; apply function to rest of 

list 



Example: sum-items  returns the sum of the numbers in the list by adding the first number
in the list to the sum of the rest of the numbers in the list.

Example: negate-list  returns a list with each number replaced by its negative.

Recursion

A function is recursive when the body of the function includes a call to that same
function. Recursive functions must have at least two cases: one that is equal to a value
and terminates immediately (base case) and a call to to the function with some change to
the parameter that makes the problem simpler (recursive case).

Simple recursion is when there is only one recursive case.

For lists, this means that a recursive function that processes lists must either terminate
with a value or pass a shorter version of the same list into itself.

Recursive functions are similar to the principle of mathematical induction.

Non-empty lists

Sometimes functions only make sense for lists that contain items (ex. (max ne-list) ). For
these cases, we have a new datatype: the non-empty list.

;; count-items: (listof Str) -> Nat  

(define (count-items loc) 

    (cond [(empty? loc) 0]  

          [else (+ 1 (count-items (rest loc)))])) 

;; sum-items: (listof Num) -> Num 

(define (sum-items loc) 

    (cond [(empty? loc) 0] 

          [else (+ (first loc) (sum-items (rest loc)))])) 

;; negate-list: (listof Num) -> (listof Num)  

(define (negate-list lon)  

    (cond [(empty? lon) empty]  

          [else (cons (- (first lon)) (negate-list (rest lon)))])) 



Design recipe refinements

If a new datatype is being used (not including list  and ne-list ), its template and data
definition must be added to the design recipe someplace before its first instance. For the
template, remember that any self-referential data type must have a base case and at
least one recursive case.

Strings and lists of characters
In racket, strings are really just lists of characters, even if they have different literals.

Helpful string functions

string->list  turns a string into a list of characters 
list->string  turns a list of characters into a string

Wrapper functions
Sometimes, data needs to be processed before it can be used in a list (or any other)
function. For example, a function might require a list of characters, so anyone wanting to
use it on a string have to convert the string themselves.

A wrapper function makes your function easier to use by performing those housekeeping
tasks. Wrapper functions always call their "child" function after setting up the proper
conditions for it run.

;; A (ne-listof X) is: 

;; * (cons X (listof X))    ; recursive definition 



Natural Numbers, Recursively
Formal definition of natural numbers
Logicians use the Peano axioms to formally define the natural numbers. These include

0 is a natural number
For every natural number n, S0 also a natural number (where S(x) is the successor
function that returns the next natural number)

Data definition for natural numbers
This can be translated into racket as a data definition:

Racket also has the inverse successor function (sub1 n)  that moves towards the base
case

Because this recursive defenition of natural numbers is similar to our recursive defition of
a list, we can write a similar template for it:

Iteration
Racket (and all functional programming languages) don't use loops :(. Instead, they use
recursion to iterate through lists.

Countdowns

Countdown: takes the natural numbers n  and k  as input and returns a list comprised of
n , n-1 , n-2 ... k+2 , k+1 , k .

;; A Nat is one of: 

;; * 0 

;; * (add1 Nat) 

;; nat-template: Nat -> Any  

(define (nat-template n)  

(cond [(zero? n) ...]  

      [else (... n ... ... (nat-template (sub1 n)) ...)])) 



If we want our countdown to stop at 0, we should use (zero? n)  instead of (= n k)  and
remove k  as a parameter entirely.

Notice that the value of n  never changes: this is always true of recursive parameters. We
say that n  "goes along for the ride".

Our countdown function is the functional equivalent to something like

Countups

Countup does the opposite of a countdown: it takes the natural numbers n  and k  as
input and returns a list comprised of n , n+1 , n+2 ... k-2 , k-1 , k .

If we want our countup to stop at 0, we should use (zero? n)  instead of (= n k)  and
remove k  as a parameter entirely.

;; countdown: Nat, Nat -> (listof Nat) 

(define (countdown n, k)  

(cond [(= n k) (cons 0 empty)]  

      [else (cons n (countdown (sub1 n)))])) 

//define variables, etc 

void countdown(int n, int k) { 

    for(int i = n; i >= k; i--) { 

        myList.add(i); 

    } 

} 

;; countup: Nat, Nat -> (listof Nat) 

(define (countup n k)  

    (cond [(= n k) (cons k empty)]  

          [else (cons n (countup-to (add1 n) k))])) 



More Lists
Sorting lists
Helper functions, sometimes recursive ones, are sometimes necessary for list processing.
A common example is a helper function that sorts a list.

An easy and approachable way to sort lists recursively is insertion sort:

 Sort the rest of the list
 Insert the first element in the correct position in the list (using a helper function

called insert )

List abbreviations
List abbreviations are available in the language level "Beginning student with list
abbreviations".

Defining lists with list

to be expressed as:

;; sort (main function) 

(define (sort lon)  

    (cond [(empty? lon) empty]  

          [else (insert (first lon) (sort (rest lon)))])) 

           

;; insert (helper function) 

(define (insert n slon)  

    (cond [(empty? slon) (cons n empty)]  

          [(<= n (first slon)) (cons n slon)]  

          [else (cons (first slon) (insert n (rest slon)))])) 

(cons 1 (cons 2 (cons 3 (cons 4 ... empty)))) 

(list 1 2 3 4 ...)        ;; no empty 



Lists defined this way have slightly different use cases to those defined using cons : lists
constructed with list  are of fixed size, whereas lists with cons  are arbitrarily sized.
Because of this, lists are preferred for writing test cases.

All of the regular list functions work with list . Lists can be "added to" (creates a new
list) by using cons .

list  and cons  should be distinguished between when writing data definitions.

Returning elements

The second element of a list can be accessed using:

which is a shortcut for

Functions that return specific elements are defined up to eigth .

Lists containing lists
Lists can contain any type of element, even another list. This is much more achievable
with the list  notation:

We can also mix-and-match cons  and list  to create nested lists.

A list that only contains values (not lists) is called a flat list.

Dictionaries
A dictionary contains a number of keys, with each one having an associated value.

Ex. In an actual dictionary, the keys are words and the values are definitions 
Ex. In a stock, the keys are symbols and the values are prices

(second my-list) 

(first (rest my-list)) 

;; [[1, 2, 3], [4, 5], 6] 

(list (list 1 2 3) (list 4 5) 6)



Many tables with two columns can be expressed as dictionaries.

Dictionary operations

Lookup Given a key, return the corresponding value 
Add Given a (key, value)  pair, add it to the dictionary 
Remove Given a key, remove its corresponding (key, value)  entry

Implementing dictionaries

A simple solution to implementing a dictionary is using an association list: a list of lists
that contain two values each: the key and the value.

The association list's type is (listof (listof X Y)) , with the template

Lookup can be implemented as:

Add and remove were left as exercises fill in

Two-dimensional data

;; An association list (AL) is one of:  

;; * empty  

;; * (cons (list Nat Str) AL)  

;;     Requires: each key (Nat) is unique 

;; (for an AL with Nat keys) 

;; al-template: AL -> Any  

(define (al-template alst)  

    (cond [(empty? alst) ...]  

          [else (... (first (first alst)) ... ; first key  

                (second (first alst)) ... ; first value  

                (al-template (rest alst)))])) 

(define (lookup-al k alst)  

    (cond [(empty? alst) false]  

          [(= k (key (first alst))) (val (first alst))]  

          [else (lookup-al k (rest alst))])) 



Another use of lists is to represent a two-dimensional table. A r  x c  is stored in a list
with r  entries, with each one of those having a length of c .

When writing functions that produce tables/lists like this, it is often helpful to have a
helper function that produces each row, and then a main function that appends the rows
together.

Processing two lists at the same time
There are three different cases for functions that consume two lists.

In the simplest case, only simple recursion is performed. An example of a function that
processes two lists using only simple recursion is the already-defined append  function: it
only needs to process the second list recursively.

In the next case, processing in lockstep, two lists of the same length are processed at
the same rate. Because (empty? list1)  if and only if (empty? list1) , there are only two
combinations that are valid for the possible data. Thus, the lockstep template is

For example, a formula calculating the dot product of a set of vectors [for vectors 
 and , ] would process both vectors at the same time

and add to the dot product as it goes.

The third case is the most complex: different lists being processed at different rates. In
this situation, all cases of empty/non-empty have to be checked, leading to four cases in

(define (my-append lst1 lst2)  

    (cond [(empty? lst1) lst2]  

          [else (cons (first lst1) (my-append (rest lst1) lst2))])) 

(define (lockstep-template lst1 lst2)  

    (cond [(empty? lst1) ... ]  

          [else (... (first lst1) ... (first lst2) ...  

                (lockstep-template (rest lst1) (rest lst2)) ... )])) 

(a1, a2, . . . ) (b1, b2, . . . ) (a1b1 + a2b2, . . . )

(define (dot-product lon1 lon2)  

    (cond [(empty? lon1) 0]  

          [else (+ (* (first lon1) (first lon2))  

          (dot-product (rest lon1) (rest lon2)))])) 



the template: both lists are empty, one list is empty (x2) and both lists are empty. This
leads to the template

where expression I doesn't require recursion, expressions II and III may or may not require
recursion, and expression IV must have recursion in some form.

An example is a function that determines whether two lists are equal:

(define (twolist-template lon1 lon2)  

    (cond [(and (empty? lon1) (empty? lon2)) ...]  

          [(and (empty? lon1) (cons? lon2))  

           (... (first lon2) ... (rest lon2) ...)]  

          [(and (cons? lon1) (empty? lon2))  

           (... (first lon1) ... (rest lon1) ...)]  

          [(and (cons? lon1) (cons? lon2)) ??? ])) 

(define (list=? lst1 lst2)  

    (cond [(and (empty? lst1) (empty? lst2)) true]  

          [(and (empty? lst1) (cons? lst2)) false]  

          [(and (cons? lst1) (empty? lst2)) false]  

          [(and (cons? lst1) (cons? lst2))  

          (and (= (first lst1) (first lst2)) (list=? (rest lst1) (rest 

lst2)))])) 



Patterns of recursion
Simple recursion
In simple recursion, every argument in the recursive function is either unchanged or a
recursive call with a simpler input. There can be multiple conditions with a recursive call,
as long as there is only one recursive call per condition.

Exponential blowup
Imagine we defined a (max-list-v2 list)  function like so:

This function uses (> )  instead of (max )  in the recursive call because (> )  is a less
expensive function than (max )  (this strategy is called in-lining). However, this
implementation is much slower than the one that uses (max )  because (max-list-v2 )
may be called twice every recursive call (once in the comparison with <  and once in the
[else]  statement). As such, the number of aclls increases exponentially with each layer
of recursion.

Measuring efficiency: big O notation
max-list-v2  may make up to  recursive calls if the list it is called on has  elements.
As such, we say max-list-v2 's efficiency is proportional to .

In contrast, the regular version of max-list  (as well as other common functions like
length ) may make up to  recursive calls on a list with  elements. As such, we say
that it has an efficiency of .

Any function can be classed by efficiency in this way:

"Big-O" Explanation Example

No recursive calls add , first

(define (max-list-v2 lon)  

    (cond [(empty? (rest lon)) (first lon)]  

          [(> (first lon) (max-list-v2 (rest lon))) (first lon)]  

          [else (max-list-v2 (rest lon))])) 

2n − 1 n

O(2n)

f(n) n

O(n)

O(1)



"Big-O" Explanation Example

List divided in half, work done on half
binary-search  on balanced
tree

One recursive application per list element length , max , etc

List divided on half, work done on both
halves

merge-sort

 application on each list item insertion-sort

Two recursive applications per list item max-list-v2

k  recursive applications per list item don't even wanna know

The last two (and mostly 3 rows are considered inefficient, and should be avoided
(especially the last 2.

Accumulative recursion
When humans find the maximum of the list, we don't usually follow a recursive algorithm:
we move through the list iteratively and compare the current value with the largest one
we've seen so far.

We can apply this strategy recursively by using an accumulator, which is a parameter in
a recursive function that keeps track of a value. In this case, the accumulator parameter
would be equal to the largest value so far, which we could compare to the rest of the list.
If the current max is smaller than the current value being looked at, it is replaced in the
recursive call.

Wrapper functions are almost always used for accumulative recursion because the
function we're trying to implement doesn't have an accumulative parameter.

O(log2n)

O(n)

O(nlog2n)

O(n2) O(n)

O(2n)

O(kn)

;; accumulative max function 

(define (max-list/acc lon max-so-far)  

    (cond [(empty? lon) max-so-far]  

          [(> (first lon) max-so-far) (max-list/acc (rest lon) (first lon))]  

          [else (max-list/acc (rest lon) max-so-far)]))  

           

;; wrapper 

(define (max-list-v3 lon)  

    (max-list/acc (rest lon) (first lon))) 



A recursive function is accumulative if all of the recursive function's arguments are either:

 Unchanged
 One step closer to the base case
 A partial answer (accumulator)

The value of the accumulator is always used an at least one of the base cases.

Another example of accumulative recursion is list reversal. In the simple recursion case,
the recursive function must pass over the whole list to add an item at the end, which
leads to an efficiency of . In contrast, the accumulative recursion cases stores the
current reversed list as an accumulator and cons es the first element in the list with the
accumulated reversed list, leading to an efficiency of :

Accumulative recursion is harder to conceptualize and debug than simple recursion, so
the latter is preferred if possible.

Generative recursion
In generative recursion, the value passed into the recursive function call is a result of a
computation on the previous recursive parameter: a new parameter is generated. As
such, the parameter may move closer to the base case, but it may also become more
complex (unlike simple recursion): for this reason, generative recursion is much harder to
debug and conceptualize.

An example of a function that uses generative recursion is (euclid-gcd n m)  function,
which calculates the greatest common denominator shared by the numbers n  and m
using the Euclidian method.

O(n2)

O(n)

;; my-reverse: (listof X) → (listof X)  

(define (my-reverse lst) ; wrapper function  

    (my-rev/acc lst empty))  

     

(define (my-rev/acc lst acc) ; helper function  

    (cond [(empty? lst) acc]  

          [else (my-rev/acc (rest lst) (cons (first lst) acc))])) 

;; euclid-gcd: Nat Nat → Nat  

    (define (euclid-gcd n m)  

        (cond [(zero? m) n]  

              [else (euclid-gcd m (remainder n m))])) 



Generative recursion is powerful, but we will avoid it for now.



Structures
Compound Data
We have already seen compound data in this course in the form of the dictionary
(implemented as an association list). Some other examples include

A complex number 
A binary tree
A student ID

We could represent this last one as a list containing the label for each attribute, as well as
a list with all of the values for those attributes in order

However, for this to work, we need to remember the order of the attributes. Racket has a
better way to store compound data like this.

Structures

Posn

This is a built-in structure (short for "position"). It stores two fields: an x-coordinate
denoted x  and a y-coordinate denoted y . A posn  structure can be created using the
constructor function make-posn :

We have selector functions that allow us to access each value from our posn  structure:

Like any other type, posn  has a type predicate:

a + bi

(list "James Bond" "Math" (list "CS135" "MATH135" "MATH137")) 

(make-posn 38 12) ;; -> (make-posn 38 12) 

;; (make-posn ... ...) is the literal for posn, much like "" for a string 

(posn-x (make-posn 4 3)) ;; -> 4  

(posn-y (make-posn 4 3)) ;; -> 3 



It also has a template:

Self-defined structures

posn  is an example of a structure built into racket, but we can define our own as well
using the special form define-struct :

Doing this also defines at least three new functions:

 The constructor, struct-name , that lets us create values of this type
 The type predicate, (struct-name? value) , that lets us test for this type
 Selectors, (struct-name-field1 value) , (struct-name-field2 value) , etc. that let

us access the values of individual fields of the structure

Now, we can create a new value of this type and store it in a constant (or pass it in a
function).

We must also write a data definition for the structure that describes the type and
requirements of the fields:

Self-defined structures follow the following substitution rules:

(posn? value) ;; if value is a posn -> true, else false 

;; my-posn-template: Posn -> Any  

(define (my-posn-template p)  

    (...(posn-x p)... ...(posn-y p)...)) 

(define-struct struc-name field1 field2 ...) 

;; an Inventory is a (make-inventory Str Num Nat)  

;; Requires: price >= 0 

(sname-fname_i (make-sname v_1 ... v_i ... v_n)) -> v_i. 

(sname? (make-sname v_1 ... v_n)) -> true  



The template for a user-defined structure is simply all of the fields:

Checked functions

Constructors don't check that their input is the correct type, which can lead to errors. To
avoid this, a wrapper function can be written that checks whether the input is valid before
making a new structure.

Simulating structures

If we want to, we can "implement" structures ourselves using lists:

 (make-struct values...)  creates a list with values...
 (struct? value)  checks the types (and requirements) of the items in the list
 Each field function returns a list item from the corresponding index

Why you would want to do this is beyond me; I can only assume this is in the notes
because some versions racket don't implement structures.

Mixed data
Functions may consumed mixed data: data of multiple (likely related) types. A particular
type of mixed data typically has a data definition.

(sname? V) -> false for V a value of any other type 

(define ... (struct-name-field1) ...  

            (struct-name-field2) ...  

            (struct-name-field3) ... 

            ...) 

;; type: graduate student 

;; type: undergraduate student 

;; A student is one of 

;; * graduate student 

;; * undergraduate student 



A template for a mixed data type will determine the type of data being inputted (usually
with a cond  block with type predicates), and then apply the corresponding template.

Advantages of structures
Helps you avoid programming errors (ex. finding the item at the wrong field/list item)
Help code be more understandable by associating meaningful names with fields
Automatically generates useful functions (ex. make-struct )

Advantages of lists
Allows you to write functions that work with multiple datatypes
Can be expressed more compactly than structures

Quote notation
cons  is a way to define lists that highlights its underlying recursive structure at the
expense of usability. list  is more wieldly, but we can do better: quote notation. Quote
notation works by defining a list of a , b , c ... as

'X  is an abbreviation of (quote X) . Here are some more examples:

'(a, b, c) 

'1 -> 1, '"ABC" -> "ABC", 'earth -> 'earth  

'(1 2 3) -> (list 1 2 3)  

'(a b c) -> (list 'a 'b 'c)  

'(1 ("abc" earth) 2) -> (list 1 (list "abc" 'earth) 2)  

'(1 (+ 2 3)) -> (list 1 (list '+ 2 3))  

'() -> empty 



Binary Trees
Trees
Storing information in trees turns out to be very useful in computing science, both
because data often occurs in a tree-like structure and because these structures can be
manipulated efficiently.

For example, the expression  can be represented as:

A tree is a set of nodes and edges where an edge connects two distinct nodes. A tree
has three requirements:

One node is the root (the starting node)
Every node that isn't the root is connected to some parent node that is closer to (or
is) the root. The node is the parent node's child node.
Every node that isn't the root is the child of n, or the child of a child of n, or the child
of a child of a child of n, etc. (the tree is connected)

Leaves are nodes without children, while internal nodes are nodes that have children
(every node must be one of these). The ancestors of a node are the list of parent nodes
that lead back to the root, while the descendants of a node are the list of nodes that has
the node as an ancestor. A subtree rooted at n is the tree formed of n and its
descendants.

Labels can be added to nodes to assign data to them. It is these that make trees
computationally useful.

Binary Trees

(2∗6)+(5∗2)
5−3



Binary trees are trees where every parent node has at most two children, and the order
of the children doesn't matter.

Data definition:

Binary Tree template

From the data definition, we know a binary tree is a list, a type of compound data (a
structure), and a type of mixed data. So, we know we need to use recursion, use each
field somehow, and use cond  to distinguish between both types of data (more accurately,
to determine if the tree is empty).

So, our template is:

Searching binary trees

Searching binary trees for a key has a very simple strategy (it's actually depth-first
search, but we don't know that yet):

 If the root's key is the one we are searching for, return true (or some other info)
 Otherwise

 Search the subtree of the left child
 Search the subtree of the right child

Here it is implemented in racket, using the binary tree template

;; A Node is a (make-node Nat BT BT)     ; Nat could be any type 

(define-struct node (key left right))    ; key is the label 

;; A binary tree (BT) is one of:  

;; * empty (nothing to do with lists, just fits requirement well) 

;; * Node 

;; bt-template: BT -> Any 

(define (bt-template btree) 

    (cond [(empty? btree) ...] 

          [(node? btree) (... (node-key btree)) 

                          ... (bt-template (node-left btree)) 

                          ... (bt-template (node-right btree)))])) 



It is pretty easy to modify this algorithm so it returns the path that it traveled to find the
key.

Binary Search Trees
The binary search tree is like the binary tree with one additional property (the ordering
property The key of a node is larger than every key in the left subtree and smaller than
every key in the right subtree (this applies to all internal nodes).

This makes searching is dramatically more efficient because we immediately know which
subtree a key must be in, and don't need to bother searching the other one. This search
algorithm is called binary search, and can be performed on ordered lists as well.

Here is an implementation of a binary search on a binary tree in racket:

;; (search k tree) produces true if k is in tree; false otherwise.  

;; search: Nat BT -> Bool  

(define (search-bt k tree)  

    (cond [(empty? tree) false]  

          [(= k (node-key tree)) true]  

          [else (or (search-bt k (node-left tree))  

                    (search-bt k (node-right tree)))])) 

;; search-bt-path-v2: Nat BT -> (anyof false (listof Sym))  

(define (search-bt-path-v2 k tree)  

    (cond [(empty? tree) false]  

          [(= k (node-key tree)) '()] 

          [else (choose-path-v2 (search-bt-path-v2 k (node-left tree))  

                                (search-bt-path-v2 k (node-right tree)))]))  

           

(define (choose-path-v2 left-path right-path)  

    (cond [(list? left-path) (cons 'left left-path)]  

          [(list? right-path) (cons 'right right-path)]  

          [else false])) 

;; (search-bst n t) produces true if n is in t; false otherwise.  

;; search-bst: Nat BST -> Bool  



Turning a list into a binary search tree

Since binary trees have structured orders, there is only one place a new key can possibly
added into any given tree. We can use binary search to find that location (by searching
for the key) and then insert it as appropriate.

With this set of steps, we can write a function that turns a list into a BST by starting with
an empty tree and adding each item one by one. Since lists are in the form cons(k list) ,
we add k  to the BST formed from list . Thus, root of the BST is the last item in list .

Augmenting Trees and BST Dictionaries
Nodes often (functionally, always) have keys, but we can more values to the node if we
wish by adding more fields to the node  structure. The values can be of any type or in any
amount; the only thing that must stay the same is that the keys are unique.

This can be used to implement BST Dictionaries, which are much more efficient than
association list dictionaries because of the binary search algorithm.

Here is an implementation of search for a BST dictionary in racket:

Example: evolutionary tree

Evolutionary trees are created by biologists to illustrate and hypothesize the evolutionary
relationships between different species. In an evolutionary tree:

The leaves are species that currently exist (or existed)
The internal nodes are hypothesized common ancestors to the leaf notes

(define (search-bst n t)  

    (cond [(empty? t) false]  

          [(= n (node-key t)) true]  

          [(< n (node-key t)) (search-bst n (node-left t))]  

          [(> n (node-key t)) (search-bst n (node-right t))])) 

(define (search-bst-dict k t)  

    (cond [(empty? t) false]  

          [(= k (node-key t)) (node-val t)]  

          [(< k (node-key t)) (search-bst-dict k (node-left t))]  

          [(> k (node-key t)) (search-bst-dict k (node-right t))])) 



The root node is a single common ancestor
Each common ancestor "split" into two species at some point, so each internal node
has two children (order doesn't matter)
Each node may be augmented with information about the species (i.e. if it
endangered [boolean], how long ago it split [integer], etc)
The order of the children does not matter

Binary Expression Trees
As illustrated before, any mathematical expression that uses operators that operate on
two values ( , , , , ) can be expressed as a binary tree (although not usually a
search tree).

In a binary expression tree:

Internal nodes have two children (we can express many unary operators as binary
operators)
Leaves have number labels, internal nodes have operator labels
The order of the children matters and is dictated by the expression

+ − ∗ / x
y



Mutual Recursion
Mutual Recursion occurs when two functions call each other recursively: f  calls g  and
g  calls f . Functions like this can often be combined into one function, but it is often
easier to understand the code if the function is written in two parts.

Mutual Recursion with natural numbers: is-even?
We can write two functions is-even? and is-odd? , both of which take a natural number
n  as input. If n  is 0, is-even?  evaluates to true and is-odd?  evaluates to false;
otherwise, it checks if the number below is of the opposite party (the mutual recursion).
As such, the two functions are called in an alternating chain until 0 is passed into one of
the functions.

Of course, these functions can be combined by adding a cond  block that checks if n  is 1,
and then returns false. However, this can't always be done.

Mutual Recursion on a list: keep-alternates
keep-alternates  keeps every other item in the list. A strategy might be to process the list
in groups of two, but this means there must be multiple base cases. Mutual recursion can
give us a "better" answer:

;; (is-even? n) produces true if n is even and false otherwise  

;; Examples:  

(check-expect (is-even? 4) true)  

(check-expect (is-even? 5) false)  

;; is-even?: Nat -> Bool  

(define (is-even? n)  

    (cond [(= 0 n) true]  

          [else (is-odd? (sub1 n))]))  

           

;; is-odd?: Nat -> Bool  

(define (is-odd? n)  

    (cond [(= 0 n) false]  

          [else (is-even? (sub1 n))])) 



Mutual recursion on a tree: binexp  and binode
When a data type references a second datatype that references the first one, mutual
recursion is natural. An example of this relationship is the one between the binexp  and
binode  templates:

;; keep-alternates: (listof Any) -> (listof Any)  

(define (keep-alternates lst)  

    (cond [(empty? lst) empty]  

          [else (cons (first lst) (skip-alternates (rest lst)))]))  

           

;; (skip-alternates lst) skips the first element of the list and keeps  

;; alternating elements from the rest.  

(define (skip-alternates lst)  

    (cond [(empty? lst) empty]  

          [else (keep-alternates (rest lst))])) 

;; binexp-template-v2: BinExp -> Any  

(define (binexp-template-v2 ex)  

    (cond [(number? ex) (... ex)]  

          [(binode? ex) (binode-template ex)]))  

           

;; binode-template-v2: BINode -> Any  

(define (binode-template node)  

    (... (binode-op node) (binexp-template-v2 (binode-left node))  

    (binexp-template-v2 (binode-right node)))) 



General Trees
Binary trees are useful in many areas, but their use is limited by the fact that any given
node can only have two children or less.

General trees are trees where nodes can have any number of children.

Arithmetic Expressions
As we've seen before, arithmetic operators like (+ ...)  and (* ...)  in racket can have
any number of arguments. So, while they can't necessairly be represented by binary
trees, they can be represented by general trees.

For example, (+ (* 4 2) 3 (+ 5 1 2) 2)  can be represented as:

For binary arithmetic expressions, we defined each node as having three fields: the
value  (be it a number or an operator), the right  subtree and the left  subtree.
However, general arithmetic expressions are defined with two fields: value  (again, either
a number or an operator) and expressions , a list of subtrees.

With this example in mind, we can create a data definition, structure, and template for a
general arithmetic tree:



This leads of course to mutual recursion.

Developing Eval

Knowing what we know about (arithmetic) general trees, we can build a function that
evaluates math expressions.

This can be done using a helper function ( apply ) that converts the operators in the tree
to real operators.

Alternate Data Definition

If we want to, we can use a list to create our tree instead of an OpNode  structure:

;; An Arithmetic Expression (AExp) is one of:  

;; * Num  

;; * OpNode  

(define-struct opnode (op args))  

;; An OpNode (operator node) is a  

;; (make-opnode (anyof '* '+) (listof AExp)). 

;; (eval exp) evaluates the arithmetic expression exp 

;; eval: AExp -> Num  

(define (eval exp)  

    (cond [(number? exp) exp]  

          [(opnode? exp) (apply (opnode-op exp) (opnode-args exp))])) 

           

;; apply: (anyof '+ '*) (listof AExp) -> Num  

(define (apply op args)  

    (cond [(empty? args) (cond [(symbol=? op '+) 0]   

                               [(symbol=? op '*) 1])]  

          [(symbol=? op '+) (+ (eval (first args)) 

                               (apply op (rest args)))]  

          [(symbol=? op '*) (* (eval (first args))  

                               (apply op (rest args)))])) 



(sidenote) I don't know why you would prefer to do this, but you can I guess

Mutual Recursion
Having complicated data definitions, especially when it comes to trees, often leads to
mutual recursion.

Other uses of General Trees
General trees like this are very good at dealing with hierarchical data. Arithmetic
expressions are an extremely common example of this in computing, but plenty of other
data is hierarchical as well.

Another example of hierarchical data is a functional programming language (we will use
racket as an example). Because racket only consists of function definitions and calls, any
racket program can be represented as a tree in the same way that racket arithmetic can.
As such, we can use a general tree to build a racket interpreter.

Some other common (and useful) examples of hierarchical data are:

Organized text (markdown, HTML, etc)
Webpages (DOM

Nested Lists
We have discussed normal lists and lists of lists, but this pattern can go arbitrarily deep:
any list with a list inside of it can be called a nested list.

Unsurprisingly) Nested lists can be represented as (or really, are) general trees. For
example, this is a tree representation of '((1 (2 3)) 4 (5 (6 7 8) 9 ())) :

;; An alternate arithmetic expression (AltAExp) is one of:  

;; * a Num  

;; * (cons (anyof '* '+) (listof AltAExp)) 



Data Definitions for Nested Lists

A list item might be empty, or a list, or a nested list (which represents any time of list of
list of list of list of...). So, we have:

We can also make a template for nested lists that calls itself on every list in the list
(meaning all the nested ones):

count-items

;; A nested list of numbers (Nest-List-Num) is one of:  

;; * empty  

;; * (cons Nest-List-Num Nest-List-Num)  

;; * (cons Num Nest-List-Num) 

;; nest-lst-template: (nested-listof X) -> Any  

(define (nest-lst-template lst)  

    (cond [(empty? lst) ...]  

          [(list? (first lst))  

                  (... (nest-lst-template (first lst))  

                   ... (nest-lst-template (rest lst)) ...)]  

          [else (... (first lst) ... (nest-lst-template (rest lst)) ...)])) 



With this template, we can create a function that counts how many items are stored in a
nested list (lists don't count as items):

Flattening a Nested List

We can also use the template to create a function, flatten , that turns a nested listed into
a flat list. This is how the racket function append  works.

;; (count-items nl) counts the number of items in nl. 

;; count-items: (nested-listof X) -> Nat  

    (define (count-items lst)  

        (cond [(empty? lst) 0]  

              [(list? (first lst)) (+ (count-items (first lst))  

                                      (count-items (rest lst)))]  

              [else (+ 1 (count-items (rest lst)))])) 

;; (flatten lst) produces a flat list with all the elements of lst. 

;; flatten: (nested-listof X) -> (listof X)  

(define (flatten lst)  

    (cond [(empty? lst) empty]  

          [(list? (first lst)) (append (flatten (first lst))  

                                       (flatten (rest lst)))]  

          [else (cons (first lst)  

                      (flatten (rest lst)))])) 



Local Definitions and Lexical Scope
For the last modules, we couldn't nest define  inside of other define  statements. As
such, every constant was accessible everywhere in the program. However, this can be a
bit cluttered an inefficient, so racket introduced a solution: local .

local  lets us define constants and functions that can only be accessed within the scope
of other functions. This is done by defining a list of constants/functions and the body of
the function we're using them for inside the body of a local  statement:

Defining constants this way can make code more readable. Consider implementing
Heron's function for the area of a triangle:

In racket, it is easy to implement this function,

but it is very opaque not recognizable as Heron's function. However, we can use a local
statement to define s  as (/ (+ a b c) 2)  within the scope of our function. Defining it
this way, we get

this makes the function concise and recognizable without the opacity of defining every
instance of s  and the chunkiness of using helper functions.

Semantics and reusing names

(local [(define x_1 exp_1) ... (define x_n exp_n)] bodyexp) 

√s(s − a)(s − b)(s − c) where s =
a + b + c

2

(define (t-area-v0 a b c)  

    (sqrt (* (/ (+ a b c) 2)  

          (- (/ (+ a b c) 2) a)  

          (- (/ (+ a b c) 2) b)  

          (- (/ (+ a b c) 2) c)))) 

(define (t-area-v4 a b c)  

    (local [(define s (/ (+ a b c) 2))]  

        (sqrt (* s (- s a) (- s b) (- s c))))) 



A name defined (bound) inside of a local  expression may reuse a name from a variable
that is defined outside of that expression, just like a parameter might. To ensure that
everything works as expected, there is a substitution rule.

The substitution rule works taking the variable in local and assigning a new name (fresh
identifier) that hasn't been used anywhere in the program. This is usually done by adding
"_1" or "_2", etc to the end of the variable name. This new constant is then "taken" out of
the local function and defined inside the enclosing scope. Then, the references to this
constant inside of the function are replaced with the new name. This way, the function's
behavior doesn't change.

Why Use local?

Clarity

If a subexpression is used twice within the same function, it will always have the same
value. As such, giving it a name using local  makes the code much more readable.

It is even sometimes helpful to use a local function when the subexpression is only
applied once to enhance readability (mnemonic name).

Efficiency: avoiding extra computation

By passing the value of a function as a local constant, that function isn't evaluated every
time the value is referenced. Instead, the value is "saved" as a parameter and "goes along
for the ride".

An example of this is max-list : the max of the rest of the list is saved as a local constant
when passed recursively, so max-list  isn't called in both the predicate and action part of
the cond  expression.

;; max-list-v4: (listof Num) -> Num  

;; Requires: lon is nonempty  

(define (max-list-v4 lon)  

    (cond [(empty? (rest lon)) (first lon)]  

          [else  

            (local [(define max-rest (max-list-v4 (rest lon)))]  

                (cond [(> (first lon) max-rest) (first lon)]  

                      [else max-rest]))])) 



The same thing can be done with search-bt-path : the searches of the left and right
paths are saved as local constants, so they aren't repeatedly recursively applied.

Even here, we search the tree on both sides. Even though this isn't a  nightmare, we
can still do better using nested locals . In version 4, we check if the left tree contains the
key first (using a local definition as before). If it does, we cons  it; otherwise, we locally
define the right path cons  that (unless it isn't a list, then we return false )

Encapsulation: Hiding Stuff

Encapsulation refers to hiding parts of the program from the program as a whole. This is
something that structures do, although we can access all the information they
encapsulate from the outside. However, local definitions actually hide information from
the enclosing scope; none of the bindings inside affect the enclosing scope.

;; search-bt-path-v3: Nat BT -> (anyof false (listof Sym))  

(define (search-bt-path-v3 k bt)  

    (cond [(empty? bt) false]  

          [(= k (node-key bt)) '()]  

          [else  

            (local [(define left-path (search-bt-path-v3 k (node-left bt))) 

                    (define right-path (search-bt-path-v3 k (node-right bt))) 

              (cond [(list? left-path) (cons 'left left-path)]  

                    [(list? right-path) (cons 'right right-path)]  

                    [else false]))])) 

O(n
2)

;; search-bt-path-v4: Nat BT -> (anyof false (listof Sym))  

(define (search-bt-path-v4 k bt)  

    (cond [(empty? bt) false]  

          [(= k (node-key bt)) '()]  

          [else  

            (local [(define left-path (search-bt-path-v4 k (node-left bt)))]  

                (cond [(list? left-path) (cons 'left left-path)]  

                      [else (local [(define right-path (search-bt-path-v4  

                                                        k (node-right bt)))]  

                              (cond [(list? right-path) (cons 'right right-

path)] 

                                    [else false]))]))])) 



Behavior encapsulation are when functions are encapsulated/hidden, meaning that they
are inaccessible in the enclosing scope. Using this, we can move helper functions inside
of their main functions, which further compartmentalizes and organizes the main
program. This property is particularly useful when using accumulators.

Here is an accumulative implementation of sum-list  that uses a local  helper function.

And an implementation of insertion sort where insert  is a local function:

The above example also illustrates the design recipe for encapsulated functions: a
purpose and contract should be included with the encapsulated function, but no
examples or tests are necessary. The enclosed function is tested by the tests for the
enclosing function, which still has the full design recipe.

Finally, we can use local  statements to implement mutual recursion. In this case, both
mutually recursive functions are included in the main function my-even :

(define (sum-list lon)  

    (local [(define (sum-list/acc lst sofar)  

                (cond [(empty? lst) sofar]  

                      [else (sum-list/acc (rest lst) (+ (first lst) sofar))]))] 

    (sum-list/acc lon 0)))    ;; would-be body of main function

;; purpose, contract, examples, etc. 

(define (isort lon)  

    (local [;; (insert n slon) inserts n into slon, preserving the order  

            ;; insert: Num (listof Num) → (listof Num)  

            ;; requires: slon is sorted in nondecreasing order  

            (define (insert n slon)  

                (cond [(empty? slon) (cons n empty)]  

                      [(<= n (first slon)) (cons n slon)]  

                      [else (cons (first slon) (insert n (rest slon)))]))]  

    ;; Would-be main function 

    (cond [(empty? lon) empty] [else (insert (first lon) (isort (rest 

lon)))]))) 

;; tests 

;; my-even?: Nat -> Bool  

(define (my-even? n)  



Scope: Reusing Parameters

Using local  definitions removes the need for helper functions to have parameters that
"go along for the ride" because these parameters can be accessed by name because the
enclosed function is inside of the main function.

Substitution Rule
A the substitution of a local expression has three parts, all of which are executed in a
single step.

 d_i  is the definition of a constant or function (either in the form (define x_i
exp_i)  or (define (x_i p_1 ... p_m) exp_i) ). The name, x_i  is replaced with a
new name (fresh identifier, call it x_i_new ) everywhere in the local expression. This
applies to every definition of a constant or function (for all i   0 at once

 All of the changed definitions ( d_1  ... d_n ) are "lifted out" to the top level of the
program all at once, preserving their ordering

 The remaining expression is in the form (local [] bodyexp') , where bodyexp'  is
the rewritten version of bodyexp with all the definition names replaced. This whole
local expression is replaced with bodyexp'

Terminology for local  expressions
The binding occurrence of a name is its use in a definition, or formal parameter to a
function.

The associated bound occurrences are the uses of that name that correspond to that
binding.

The lexical scope of a binding occurrence is all places where that binding has effect,
taking note of holes caused by reuse of names.

Global scope is the scope of top-level definitions

    (local [(define (is-even? n)  

                (cond [(= n 0) true]  

                      [else (is-odd? (sub1 n))]))  

            (define (is-odd? n)  

                (cond [(= n 0) false] 

                      [else (is-even? (sub1 n))]))]  

    (is-even? n)))    ;; the would-be main function 





Functions as Values
First class values
First class values are values that can be

 consumed as function arguments
 produced as function results
 bound to identifiers
 stored in lists and structures

In racket, function are first class values: the can be used in all of these ways (in
intermediate student or after).

This feature is what separates functional programming languages (like Racket) from
languages that aren't primarily functional. For example, without using lambda expressions,
1, 2, and (4 can't be done in Java.

Consuming Functions
In racket, function names can be consumed as parameters and then applied:

To see why this is useful, consider two functions: remove-vowels , which removes vowels
from a list of characters, and remove-odds , which removes odd numbers from a list of
numbers. These two functions have the same overall structure; the only difference is the
predicated used to determine which items should be removed.

As such, we can define a function that abstracts away this difference by accepting the
predicate as a argument. This way, we can choose to filter whatever we want from the list
by writing the corresponding predicate.

(define (foo f x y) (f x y)) 

;; ex. (foo + 2 3) ⇒ (+ 2 3) ⇒ 5 

(define (my-filter pred? lst)  

    (cond [(empty? lst) empty]  

          [(pred? (first lst))  



Filter
The function we've just written already exists in racket as filter . filter  is a higher-
order function because either consumes or produces a function. Many similar functions
that generalize common types of simple recursion exist in racket as well.

Functional Abstraction
What we did when creating my-filter  is called functional abstraction: creating abstract
version of concrete types of functions. Doing this has several advantages:

 Reducing code size
 Avoiding cut-and-paste
 Fixing bugs in one place instead of many
 Improving one functional abstraction improves many applications

Functions producing functions
Because functions are values, functions can create other functions as well, which is
enormously useful.

An simple example is the function make-adder , which produces a function that adds a
specific number to any number:

Using a trace, we can see that (make-adder 3)  produces

We can store this function as a value, or use it immediately. For example, ((make-adder 3)
4)  evaluates to 7 . We can even bind this function to an identifier and use it over and

            (cons (first lst) (my-filter pred? (rest lst)))] 

          [else (my-filter pred? (rest lst))])) 

(define (make-adder n)  

    (local  

        [(define (f m) (+ n m))]  

    f)) 

(define (f_1 m) (+ 3 m))  

f_1 



over: (define add_3 (make-adder 3)) .

Being able to do this using local  means that functions no longer have to be built-in or
explicitly defined by the user.

Storing Functions
We can replace our code for apply  (from evaluating binary expression trees) with code
that actually applies the function stored in the opnode  instead of having to use a cond
statement to parse it:

This has the added advantage of working for a binary tree that has no arguments, as no
function is applied (leaving the value unchanged).

However, quote notation makes it really easy to store our tree as a list of lists instead of
as a structure: (eval '(+ 1 (* 3 3 3)))  is extremely concise. However, this gives us the
issue of having +  in symbolic form again. To solve this, we can define a lookup table
(association list) where symbols are paired up with their corresponding functions:

Then, we can simply apply this function in the main function by implementing a lookup
function:

(define (my-apply op args)  

    (cond [(empty? args) (op )]  

          [else (op (eval (first args))  

                    (my-apply op (rest args)))])) 

(define trans-table (list (list '+ +) (list '* *))) 

;; (lookup-al key al) finds the value in al corresponding to key  

;; lookup-al: Sym AL -> ???  

(define (lookup-al key al)  

    (cond [(empty? al) false]  

          [(symbol=? key (first (first al))) (second (first al))]  

          [else (lookup-al key (rest al))])) 

           

;; (eval ex) evaluates the arithmetic expression ex.  

;; eval: AExp -> Num  

(define (eval ex)  



This way, the apply function doesn't need to use boilerplate code.

Contracts and Types
Before, contracts consisted of in-built datatypes ( Num , Bool , Sym , (listof ...) etc.)
and user-defined datatypes ( HexColor , MarkedSCList , etc). However, since functions
(with their own contracts) can be treated as values, we have to nest contracts. When a
function is passed as an argument or created, it is replaced by its own contract in the
main contract.

For example, the contract of our lookup-al  function is:

Since it takes a Sym , an association list between Sym s and binary arithmetic functions
(whose contracts are Num Num -> Num ) and either returns false  or a binary arithmetic
function.

Parametric Types

Sometimes, although a higher order function and accept any type of datatype, its the
datatypes of its output depend on the functions it accepts. For example, the output of
filter  can produce any type of list, but the predicate provided determines the kind of
list that gets outputted (i.e. there is a dependence between the type of predicate and
type of list).

To express this, we use a type variable, often X  to denote a hypothetical type that could
be anything, but must remain constant (more than one can be used if required). Using a

    (cond [(number? ex) ex]  

          [(cons? ex)  

            (my-apply (lookup-al (first ex) trans-table) (rest ex))]))  

           

;; (my-apply op exlist) applies op to the list of arguments.  

;; my-apply: ??? (listof AExp) -> Num  

(define (my-apply op args)  

    (cond [(empty? args) (op )]  

          [else (op (eval (first args)) (my-apply op (rest args)))])) 

;; lookup-al: Sym (listof (list Sym (Num Num → Num))) →  

;;            (anyof false (Num Num → Num)) 



type variable denotes a relationship between members of the contract. As such, the
contract of filter  is:

Functions that can work on many types of values this way are called polymorphic or
generic.

Simulating Structures
We can use the ability to produce and bind functions to implement structures without
using lists. Consider a structure that stores a point:

This can be simulated with the function

This stores a point "structure" as a function, which can be bound to a name using define
if desired. When points as passed into the "structure", they are passed into the local
definition, which will get "lifted out" when the program is evaluated.

As such, if we define a function like (define p1 (mk-point 3 4)) , it will become (define
p1 symbol_to_value_1)  (because symbol_to_value  was "lifted out"). (p1 'x)  evaluates
to (symbol_to_value_1 'x') , which returns 3 (because we set the "structure" this way).
To make it easier to access, we can write some accessor functions:

So now, (point-x p1)  evaluates to 3 and (point-y p1)  evaluates to 4. We have
implemented structures (the type predicate can presumably also be implemented).

;; filter: (X → Bool) (listof X) -> (listof X) 

(define-struct make-point (x y)) 

(define (mk-point x y)  

    (local [(define (symbol-to-value s)  

                (cond [(symbol=? s 'x) x]  

                      [(symbol=? s 'y) y]))]  

    symbol-to-value)) 

(define (point-x p) (p 'x))  

(define (point-y p) (p 'y)) 



Functional Abstraction
Abstraction is the process of generalizing sets of similar things. This is done by having
functions with parameters (on a value level) and partly by writing function templates (on a
functional level). Higher order functions provide a way to fully abstract away small
differences in functions by letting functions be parameters.

Anonymous Functions
An anonymous function is a function that has no name (or rather, that doesn't get called
by name outside of its local definition).

In this example, f  is only used when creating other functions; it does not need a
meaningful name. Because defining it with one adds unnecessary complexity by having
useless code, there is a special form for producing anonymous functions to be used as
parameters: lambda expressions.

Lamda Expressions
A lambda function is a function that makes functions. It is in the form

Here, (x y)  denotes the two parameters of our function, x  and y , and (+ x (* x y))  is
the expression that relates these variables. This code is the unnamed equivalent to:

The lambda version of make-adder  is:

(define (make-adder n)  

    (local [(define (f m) (+ n m))] f))  

        (make-adder 3) 

(lambda (x y) (+ x (* x y))) 

(define (f x y)  

    (+ x (* x y))) 



Because lambda functions are values (in fact, they are designed specifically to be used as
values), they can be applied in the same line as their definition:

Accordingly, the substitution rule is simply replacing the parameters in the function with
the given parameters in the function application, just like a regular function.

Lambda and Function Definitions
In the internals of racket using define  does one thing: binds a value to a name (of
course, that value can be a function because racket is a functional programming
language). The actual function being created is a lambda expression, which is then bound
to the specified value.

As such, our semantic rule for functions must also include the step that exposes the
lambda expression. However, this can make traces much more complicated without telling
us anything else about how the program runs, so well will skip this step when tracing
functions defined normally (not with a lambda expression).

Transforming Strings
Consider a function transform  that takes a string and turns it into another based on a set
of rules we specify. Before lambda expressions, we would need to hard-code these rules
into the tranform  function, meaning we couldn't apply rules flexibly. Moreover, if some
rules overlapped, using a cond statement would only let one be applied at a time.

For example, if had rules to capitalize each letter in the string and switch each letter in
the string with the next one alphabetically, "a" could tranform into "A" or "b" (depending

(define (make-adder n)  

    (lambda (m) (+ n m))) 

((lambda (x y) (+ x (* x y))) 3 6)    ;; -> 21  

((lambda (x_1 ... x_n) exp) v_1 ... v_n) -> exp' 

(define (interest-earned amount) (* interest-rate amount)) 

;; is actually 

(define interest-earned (lambda (amount) (* interest-rate amount))) 



on the order of our rules), but never "B".

Both of these problems can be solved using lambda functions.

We could make a list of question-answer pairs, where the question is a predicate (that
accepts a character) and the answer is a Char → Char function. The first question-
answer pair in the list would be applied to the string character by character, then the
second pair, etc.

Map
Map  is a function that takes a list and a function, and returns the list with the function
having been applied to each element. It can be fairly easily implemented by using a
function as a first-class value:

Map  can be used to considerable shorten definitions of functions that traverse through
lists and modify each item, something that has come up often in CS 135 (consider
negate-list  and compute-taxes ). For example, negate-list  can be implemented as:

Foldr
Consider another set of functions: those that process a list and produce a single value.
Many of these functions follow a similar structure: A base case for when the function is
empty and some operation that links the current list item with a recursive call on the rest
of the list. This is, of course, our list template. An example of a function that applies it is
sum-of-numbers , which adds all the numbers in a list:

(define (my-map f lst)  

    (cond [(empty? lst) empty]  

          [else (cons (f (first lst)) (my-map f (rest lst)))])) 

(define (negate-list lst) (my-map - lst)) 

(define (sum-of-numbers lst) 

    (cond [(empty? lst) 0]                            ;; base case (0)  

          [else (+ (first lst)                        ;; operation (+) 

                   (sum-of-numbers (rest lst)))]))    ;; recursive application 



This can be generalized by the function foldr , which takes a function that combines
values (operator), the base case, and the list to apply it to. Here is its implementation

And sum-of-numbers  implemented using foldr

"Foldr" is short for "fold right", because foldr  can be thought of as folding a list using the
provided combining function.

Foldr 's contract is

It is possible to use folder  in such a way that the value of the first list item doesn't
matter. In this case, it doesn't need to be included in the combination function. An
example of this is count-items : because it only counts items, the value of those items
doesn't matter and doesn't need to be included in the function.

Producing lists with foldr

Lists can also be produced with folder by including a call to cons  in the combination
function. For example, we can define negate-list  using foldr  like so:

In this case, the lambda expression cons es the negated result to the recursive
application.

Implementing map  with foldr

Since map  is a simply recursive list → list function, we can implement it using foldr .
Specifically, it applies a function to the first item in the list, then cons es it with the

(define (my-foldr combine base lst)  

    (cond [(empty? lst) base]  

          [else (combine (first lst)  

                         (my-foldr combine base (rest lst)))])) 

(define sum-of-numbers (foldr + 0 lst)) 

;; foldr: (X X -> X) X (listof X) -> X 

(define (negate-list lst)  

    (foldr (lambda (x rror) (cons (- x) rror)) empty lst)) 



function mapped to the rest of the list.

Using foldr

Although foldr  effectively replaces the list template, it is not obsolete. Writing a function
explicitly using the list template has the advantage of being readable and human-
understandable, unlike the much more opaque foldr . foldr  condenses code, but at the
expense of readability.

foldl  Generalizing Accumulative Recursion
Just as foldr  starts from the right of a list and moves left, foldl  starts from the left of a
list and moves right using accumulative recursion. The first item of the list and the
accumulated value are combined using the combine function, then passed as the
accumulator into the recursive call.

foldl  can be implemented like so:

Here is sum-list  and my-reverse  implemented by using foldl . Notice that sum-list
has the same parameters as its foldr  implementation; this shows how it can be easily
implemented using both simple and accumulative recursion.

build-list

(define (my-map f lst)  

    (foldr (lambda (x rror) (cons (f x) rror)) empty lst)) 

(define (my-foldl combine base lst0)  

    (local  

        [(define (foldl/acc lst acc)  

            (cond [(empty? lst) acc]  

                  [else (foldl/acc (rest lst) (combine (first lst) acc))]))]

        (foldl/acc lst0 base))) 

(define (sum-list lon) (my-foldl + 0 lon))  

(define (my-reverse lst) (my-foldl cons empty lst)) 



build-list  is another useful higher-order function that takes a natural number n  and a
function f , and produces the list

We can easily implement it:

(list (f 0) (f 1) ... (f (sub1 n))) 

(define (my-build-list n f)  

    (local  

        [(define (list-from i)  

            (cond [(>= i n) empty]  

                  [else (cons (f i) (list-from (add1 i)))]))]  

        (list-from 0))) 



Generative Recursion
Simple and accumulative recursion, which we have been using so far, is a way of deriving
code whose form parallels a data definition. Generative recursion is more general: the
recursive cases are generated based on the problem to be solved. This means that the
solutions (and cases) for these problems require some background knowledge of the
problem attempting to be solved.

An example is the calculation of  using the Euclidian algorithm:

Coming up with this solution requires outside knowledge, namely that .

Termination
A function terminates when it can be reduced to a value in finite time. It is easy to argue
that a non-recursive function terminates because it can be shown that all functions called
inside of it terminate. However, showing that all recursive functions terminate is harder.

Termination of simple recursion
Simply recursive functions always make recursive applications on smaller (or less
complex) values, which are bounded on the bottom by a base case (for example,  or a
empty ). As a result, we can show that the depth of recursion is bounded below, and thus
the function evaluation can't go on forever.

Many list functions have a maximal depth of recursion equal to the length of the list.

Termination of euclid-gcd
Although there is no way to prove that generatively recursive functions terminate in the
general case, we can use outside knowledge to show that specific generatively recursive
functions do.

gcd(a, b)

;; (euclid-gcd n m) computes gcd(n,m) using Euclidean algorithm  

;; euclid-gcd: Nat Nat -> Nat  

(define (euclid-gcd n m)  

    (cond [(zero? m) n]  

          [else (euclid-gcd m (remainder n m))])) 

gcd(a, b) = gcd(b, r)

0



In the case of euclid-gcd , we can show that the second argument always gets smaller
with each application, and is bounded below by the base case of 0. As such, its depth of
recursion is bounded by the size of the second argument, even though it gets reduced
much faster in practice.

An example of a function we can't show to terminate is the collatz function (namesake of
the collatz conjecture).

Quicksort
Quicksort is a recursive, divide-and-conquer sorting algorithm that follows the following
steps when sorting a list of numbers:

 Set the first number in the list as the "pivot"
 Create three lists: the one with all the elements in the list smaller than or equal to

the pivot, all the greater than or equal to elements, and a list containing just the
pivot

 Quicksort the first two lists
 Append into one list in the order {less than} {pivot} {greater than}

Quicksort usually has an efficiency of . However, if a list is already in normal
or reverse order, quicksort will have an efficiency approaching .

Quicksort termination

Since the total number of items in the sublists is always smaller than the number of items
in the main list (because the pivot is not included), we know quicksort must terminate. Its
depth of recursion is bounded above by the number of items in the list.

O(n ∗ log(n))

O(n2)



Directed Graphs
A directed graph consists of a collection of nodes (also called vertices) connected by
edges. An edge is an ordered pair of nodes, which we can represent by an arrow from
one node to another.

It turns out that trees are a type of graph; specifically when an edge denotes a parent-
child relationship. Graphs are the generalization of trees: any two nodes can be
connected.

An edge between nodes A and B is denoted (A, B, which is graphically denoted as 
. Here, B is an out-neighbor of A, and A is an in-neighbor of B.

A sequence of nodes A, B, C, D... is a path or route if (A, B and (B, C and (C, D, etc. are
all edges. In this case, the path has a length equal to the number of edges. If a path
comes back upon the starting element, it is called a cycle; directed graphs without cycles
are called directed acyclic graphs (DAGs).

Representing Graphs

A → B



We can represent a graph by associating each node with a symbol, and storing a list of
each node's out-neighbors within it. This representation is called an adjacency list, and it
is quite similar to how we stored trees.

Data definitions for Node and Graph

Template for Graphs

This leaves space for list-of-nodes-template , which processes lists of nodes (likely
using mutual recursion).

Finding neighbors
We can use the template to create a function that returns the neighbors of a given node
in a given graph. This is done by recursing through the adjacency list normally and
checking whether each node is the given node (and returning the list if neighbors if it is).

;; A Node is a Sym  

;; A Graph is one of:  

;; * empty  

;; * (cons (list v (list w_1 ... w_n)) g)  

;; where g is a Graph  

;;      v, w_1, ... w_n are Nodes  

;;      v is the in-neighbour to w_1 ... w_n in the Graph  

;;      v does not appear as an in-neighbour in g 

;; graph-template: Graph -> Any  

(define (graph-template g)  

    (cond [(empty? g) ...]  

          [(cons? g) (... (first (first g))  

                     (listof-node-template (second (first g))) 

                     (graph-template (rest g)) ...)])) 

;; neighbours: Node Graph -> (listof Node)  

;; requires: v is a node in g  

(define (neighbours v g)  

    (cond [(empty? g) (error "Node not found")]  



Finding Paths
A path on a graph can be represented as an ordered list of nodes that form the path. We
must use generative recursion to solve this problem (simple recursion will not work). If a
path between two nodes exists, either:

 The starting and target node are the same
 There is a path between an out-neighbor of the starting node and the target node

This creates a sub-problem to solve, namely, the sub-problem of finding the path
between the each of the starting node's out-neighbors and the target node.

If 1 is not satisfied by this step, the algorithm backtracks by applying these steps to each
of the out-neighbors. This same process keeps happening until either the target node is
found or all of the possibilities are exhausted.

This process is "backtracking" because if the algorithm fails to find a node from node to
the target, it "backtracks" and tries the next neighbor).

This suggests a find-path  would be mutually recursive with a find-path-list  function
that applies find-path to all the out-neighbors, just like we saw with general trees.

          [(symbol=? v (first (first g))) (second (first g))]  

          [else (neighbours v (rest g))])) 

;; (find-path orig dest g) finds path from orig to dest in g if it exists  

;; find-path: Node Node Graph -> (anyof (listof Node) false)  

(define (find-path orig dest g)  

    (cond [(symbol=? orig dest) (list dest)]  

          [else  

            (local  

                [(define nbrs (neighbours orig g))  

                 (define ?path (find-path/list nbrs dest g))]  

                 (cond [(false? ?path) false]  

                 [else (cons orig ?path)]))])) 

;; (find-path/list nbrs dest g) produces path from  

;; an element of nbrs to dest in g, if one exists  

;; find-path/list: (listof Node) Node Graph -> (anyof (listof Node) false)  

(define (find-path/list nbrs dest g)  

    (cond [(empty? nbrs) false]  



Backtracking in implicit graphs
Sometimes, it is not computationally efficient to store an entire graph that represents a
given situation (for example, a decision tree for all possible chess games). However, if a
list of neighbors can be generated simply from knowing the value of a node (for example,
in a chess game, the possible moves that turn), we can still use backtracking to search
the graph.

This "blind backtracking" is the basis for many artificial intelligence programs.

Termination of find-path
For directed acyclic graphs, we know that any given iteration of find-path  will never
search the origin (or otherwise, there would be a cycle somewhere). Therefore, the each
sub-problem must be smaller, so we know that find-path  will always terminate in a DAG.

However, if there is a cycle in the graph, find-path  will never terminate because it will
keep searching around and around the graph.

To avoid this, we can add an accumulator that keeps track of which nodes have been
visited already. Then, we will add a check to find-path-list  that checks whether the
node we are currently inspecting has already been inspected.

Here is the new code for find-path-list :

          [else  

            (local  

                [(define ?path (find-path (first nbrs) dest g))]  

                (cond [(false? ?path) (find-path/list (rest nbrs) dest g)]  

                [else ?path]))])) 

;; find-path/list: (listof Node) Node Graph (listof Node) ->  

;;                 (anyof (listof Node) false)  

(define (find-path/list nbrs dest g visited)  

    (cond [(empty? nbrs) false]  

          [(member? (first nbrs) visited)  

           (find-path/list (rest nbrs) dest g visited)]  

          [else (local [(define ?path (find-path/acc (first nbrs)  

                                       dest g visited))]  

                    (cond [(false? ?path)  

                           (find-path/list (rest nbrs) dest g visited)]  



In this graph, the accumulator limits the depth of recursion of the function to the number
of nodes, so we know that the program must terminate.

Efficiency
We now have a find-path  that even works on graphs with cycles, but it still has one
problem: inefficiency. It is possible that this algorithm will explore every possible path
from the origin in a graph, which grows exponentially with each new node and edge.
Indeed, even relatively small graphs may have tens of thousands of possible paths to
search.

We can solve this by passing the results of a failed computation on to the next
computation. That way, the same computation won't be performed twice. To do this, we
will return the failed computation instead of false when a path isn't found. However, we
now need to distinguish between successful and unsuccessful computations; we will
define two new structures to do this:

                          [else ?path]))])) 

                           

;; find-path/acc: Node Node Graph (listof Node) ->  

;;                (anyof (listof Node) false)  

(define (find-path/acc orig dest g visited) 

    (cond [(symbol=? orig dest) (list dest)]  

          [else  

            (local  

                [(define nbrs (neighbours orig g))  

                 (define ?path (find-path/list nbrs dest g (cons orig 

visited)))] 

               (cond [(false? ?path) false]  

                     [else (cons orig ?path)]))]))  

                      

(define (find-path orig dest g) ;; new wrapper function  

    (find-path/acc orig dest g '())) 

(define-struct success (path))  

;; A Success is a (make-success (listof Node))  

(define-struct failure (visited))  

;; A Failure is a (make-failure (listof Node))  



This way, we can use the auto-generated type predicates to tell whether the returned
path is a successful one or not.

Final Implementation of find-list

;; A Result is (anyof Success Failure) 

;; find-path/list: (listof Node) Node Graph (listof Node) -> Result  

(define (find-path/list nbrs dest g visited)  

    (cond [(empty? nbrs) (make-failure visited)]  

          [(member? (first nbrs) visited)  

           (find-path/list (rest nbrs) dest g visited)]  

          [else  

            (local  

                [(define result (find-path/acc (first nbrs) dest g visited))] 

              (cond [(failure? result)  

                     (find-path/list (rest nbrs) dest g (failure-visited 

result))] 

                    [(success? result) result]))])) 

;; find-path/acc: Node Node Graph (listof Node) -> Result  

(define (find-path/acc orig dest g visited) 

    (cond [(symbol=? orig dest) (make-success (list dest))]  

          [else  

            (local  

                [(define nbrs (neighbours orig g))  

                 (define result (find-path/list nbrs dest g (cons orig 

visited))) 

              (cond [(failure? result) result]  

                    [(success? result)  

                     (make-success (cons orig (success-path result)))]))])) 

;; find-path: Node Node Graph -> (anyof (listof Node) false)  

(define (find-path orig dest g)  

    (local  

        [(define result (find-path/acc orig dest g empty))]  

      (cond [(success? result) (success-path result)]  

            [(failure? result) false]))) 




